febrero
21

Datos Técnicos

7 Libros de Matematica, Carlos Ivorra Castillo
Spanish | 7 PDFs | Freeware | 15MB | Carlos Ivorra Castillo

Descripción

Carlos Ivorra, Profesor de la Universidad de Valencia, España nos muestra en estos 7 libros el mundo de las matematicas.

Contenido del Pack

Álgebra.
Análisis Matemático.
Funciones de Variable Compleja con Aplicación a la teoría de Números.
Geometría.
Lógica y Teoría de Conjuntos.
Pruebas de Consistencia.
Teoría de números.

Álgebra

Consta de 17 capítulos y dos apéndices. En el capítulo XII se demuestra que los anillos de enteros algebraicos de los cuerpos numéricos son dominios de Dedekind. Los capítulos previos contienen todo lo necesario para llegar a definir estas nociones, probar el resultado y comprender su importancia (anillos, módulos y espacios vectoriales, extensiones de cuerpos, grupos, matrices y determinantes, etc.) Los dos capítulos siguientes estudian más a fondo el caso de los cuerpos cuadráticos, los capítulos XV y XVI (Teoría de Galois y Módulos finitamente generados) presentan algunos resultados adicionales de cara a un futuro curso de Teoría de Números más avanzado.. Finalmente, el capítulo XVII trata sobre resolución de ecuaciones por radicales.

Análisis Matemático

Los dos primeros capítulos son de topología. Luego cálculo diferencial e integral de una y varias variables, lo que incluye un poco de ecuaciones diferenciales (los teoremas de existencia y unicidad) y la teoría de la medida básica (hasta el teorema de Riesz y el teorema de cambio de variable). Más adelante conceptos básicos de la geometría diferencial particularizados a subvariedades de Rn (hasta la integración en variedades, el teorema de Stokes y las propiedades básicas de la cohomología de De Rham) y algunos resultados más avanzados para el caso de superficies en R3 (geodésicas, curvatura de Gauss, etc.). Aparte de ejemplos propiamente analíticos y geométricos, hay algunas aplicaciones a la física (electromagnetismo, gravitación, mecánica de fluidos, etc.) En particular se ha incluido algunos complementos analíticos al estudio de las geometrías no euclídeas.

Geometría

Una exposición de la geometría desde diferentes puntos de vista. En los primeros capítulos se introduce axiomáticamente la geometría euclídea, luego las coordenadas y de ahí a la geometría analítica, luego a la geometría proyectiva, al estudio de las secciones cónicas y, finalmente, los últimos capítulos estudian las geometrías no euclídeas.

Funciones de Variable Compleja

Una introducción a la teoría de funciones holomorfas con aplicaciones a la teoría de números. Además de los resultados usuales (funciones holomorfas y meromorfas, series y productos infinitos, el teorema de los residuos, etc.) se demuestra el teorema de Dirichlet sobre primos en progresiones aritméticas, el teorema de los números primos, la ley de reciprocidad cuadrática, etc. Los últimos capítulos tratan sobre funciones multiformes y superficies de Riemann.

Lógica y Teoría de Conjuntos

Una introducción a la teoría algebraica de números. Se centra en la aritmética de los cuerpos numéricos y sus compleciones (cuerpos de números p-ádicos), con aplicaciones a las ecuaciones diofánticas. Especialmente se expone la teoría de Gauss sobre formas cuadráticas binarias y los resultados principales de Kummer sobre el último teorema de Fermat. El último capítulo contiene dos pruebas de trascendencia: el teorema de Lindemann-Weierstrass y el teorema de Gelfond-Schneider.

Pruebas de Consistencia

Este libro consta de dos partes:
Primera parte: Teoría básica y aplicaciones
Modelos de la teoría de conjuntos, constructibilidad, extensiones genéricas, álgebras de Boole. Aplicaciones.
Segunda parte: Cardinales grandes
Cardinales medibles, débilmente compactos, de Ramsey, compactos, supercompactos y enormes. Aplicaciones.

Teoría de números

Una introducción a la teoría algebraica de números. Se centra en la aritmética de los cuerpos numéricos y sus compleciones (cuerpos de números p-ádicos), con aplicaciones a las ecuaciones diofánticas. Especialmente se expone la teoría de Gauss sobre formas cuadráticas binarias y los resultados principales de Kummer sobre el último teorema de Fermat. El último capítulo contiene dos pruebas de trascendencia: el teorema de Lindemann-Weierstrass y el teorema de Gelfond-Schneider.

Enlaces

Web del Autor

No somos responsables de los enlaces en la caja de comentarios sociales, usarlos bajo su propio juicio.
9
@Anonymous 21/02/2008 20:16:00 #1

Hola , ¿me podría decir de dónde obtiene tantos libros ? o le puedo yo hacer alguna petición ?

Es que los necesito con urgencia .

Muchas gracias.

Mi email : [email protected]

Espero que me responda

@jimmy_criptoy 21/02/2008 20:49:00 #2

Hola.
Por lo general los libros los suben otras personas, yo solo los ubico donde los comparten, por ejemplo en este caso esta en la misma web del autor, que por cierto tiene mas libros en Descarga Directa(DD).

Saludos

@kolinar 21/02/2008 23:36:00 #3

Gracias por vuestro aporte. Me parecen muy interesantes.

@Ignacio Melendez 31/07/2009 16:34:09 #4

Bueeno, muchas gracias!!!

@JuanKUD 29/03/2010 18:43:34 #5

Bien por este aporte a toda la comunidad académica y publico en general.

MUY AMABLE

@Oscarj 02/05/2010 14:46:03 #6

Excelente. gran aporte.

@wtabares 03/06/2010 16:28:30 #7

Gracias por el aporte … bajando !!!!

@Daniel 18/06/2010 12:42:23 #8

Que buen libro… muchas gracias….

@anibal 07/11/2010 17:34:53 #9

gracias por el aporte, me sirvio de mucho….

¿Algo que Comentar?

Tu avatar en los
comentarios

Sonrisa Triste, Afligido, Apenado Sonrisa Guiñar un ojo Burla, Broma, Sarástico Muerto de Risa Contento, Feliz Neutral, Sin Palabras Roll Eyes (Sarcástico) Conmocionado, Impresionado Confundido, Desorientado Chido, Bueno, Exelente, Lindo Sonrojado, Ruborizado, Avergonzado Risa Malvada, Malvado Enojado, Enfadado Sorpresa, Asombro, Admiración Loco, Enojado, Enfadado y con Ideas Disparatadas Llanto, Lloro, Desconsuelo Exclamación, Imprecación Idea, Opinión Flecha Enojado        

Tenga en Cuenta: La moderación de comentarios está habilitada y puede retrasar tu comentario. No hay necesidad de volver a enviar su comentario.